Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires.

نویسندگان

  • Evan W Miller
  • John Y Lin
  • E Paxon Frady
  • Paul A Steinbach
  • William B Kristan
  • Roger Y Tsien
چکیده

Fluorescence imaging is an attractive method for monitoring neuronal activity. A key challenge for optically monitoring voltage is development of sensors that can give large and fast responses to changes in transmembrane potential. We now present fluorescent sensors that detect voltage changes in neurons by modulation of photo-induced electron transfer (PeT) from an electron donor through a synthetic molecular wire to a fluorophore. These dyes give bigger responses to voltage than electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based on hydrophobic anions or voltage-sensitive ion channels. These features enable single-trial detection of synaptic and action potentials in cultured hippocampal neurons and intact leech ganglia. Voltage-dependent PeT should be amenable to much further optimization, but the existing probes are already valuable indicators of neuronal activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved PeT molecules for optically sensing voltage in neurons.

VoltageFluor (VF) dyes have the potential to measure voltage optically in excitable membranes with a combination of high spatial and temporal resolution essential to better characterize the voltage dynamics of large groups of excitable cells. VF dyes sense voltage with high speed and sensitivity using photoinduced electron transfer (PeT) through a conjugated molecular wire. We show that tuning ...

متن کامل

Quantum transport through molecular wires

We explore electron transport properties in molecular wires made of heterocyclic molecules (pyrrole, furan and thiophene) by using the Green’s function technique. Parametric calculations are given based on the tight-binding model to describe the electron transport in these wires. It is observed that the transport properties are significantly influenced by (a) the heteroatoms in the heterocyclic...

متن کامل

Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires.

Electron interactions in and between wires become increasingly complex and important as circuits are scaled to nanometre sizes, or use reduced-dimensional conductors such as carbon nanotubes, nanowires and gated high-mobility two-dimensional electron systems. This is because the screening of the long-range Coulomb potential of individual carriers is weakened in these systems, which can lead to ...

متن کامل

Molecular wires: tuning of electron transport

Electron transport characteristics through molecular wires are studied by using the Green’s function formalism. Parametric calculations are performed based on the tight-binding model to investigate the transport properties through the wires. The transport characteristics are significantly influenced by (a) the interference effects, (b) chemical substituent group, (c) molecule-to-electrode coupl...

متن کامل

Photoinduced charge and energy transfer in molecular wires.

Exploring charge and energy transport in donor-bridge-acceptor systems is an important research field which is essential for the fundamental knowledge necessary to develop future applications. These studies help creating valuable knowledge to respond to today's challenges to develop functionalized molecular systems for artificial photosynthesis, photovoltaics or molecular scale electronics. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 6  شماره 

صفحات  -

تاریخ انتشار 2012